Astronomers observed a supermassive black hole moving in space without a host galaxy

Along the way, the giant is creating shock waves and triggering star formation.

Researchers from Canada, Australia, and the United States have found evidence of a rogue supermassive black hole that is tearing through space and interacting with the circumgalactic medium, causing shock waves and starting star formation. Detecting such runaway SMBHs is challenging, but crucially important.

There are various ways for a supermassive black hole to escape from the center of a galaxy, starting with a galaxy merger that results in a binary SMBH. If a third SMBH reaches the galaxy’s center before the binary merges, a three-body interaction can give a significant velocity to one of the SMBHs, leading to its escape from the nucleus.


Locating rogue SMBHs is challenging, despite their theoretical foundations. In 2021, astronomers discovered one contender, located 230 million light-years away, through unusual movement and speed indicating a recent disruption. However, it is unclear whether it was a gravitational wave recoil event, a double black hole system, or an ongoing galaxy merger.

There are a few ways for astronomers to spot a runaway SMBH. The simplest method is to recognize it by its luminosity as an active galactic nucleus that absorbs material. However, determining whether they are “naked” black holes or the nuclei of merging galaxies can be difficult.

Another way is through the star mass that the rogue hole pulls behind it. When an SMBH is ejected, some stars are drawn along by its powerful gravitational force. However, distinguishing the hole and its star companions at a distance is challenging due to the lack of an AGN’s luminosity.

A third technique for identifying a suspected rogue SMBH is its impact on diffuse gas in the circumgalactic medium (CGM) as it passes through it.

Scientists noted, “The interaction of a runaway supermassive black hole with the CGM can lead to the formation of a wake of shocked gas and young stars behind it. Their paper reports the serendipitous discovery of a linear feature in images from Hubble’s Advanced Camera for Surveys that could be one of these wakes.”

As researchers explained, it can be challenging to identify rogue SMBHs despite their theoretical foundation. In 2021, however, astronomers discovered a promising candidate located 230 million light-years away, as they observed unusual movement and speed indicating recent disruption. The team could not determine whether they had observed a gravitational wave recoil event, a double black hole system, or an ongoing galaxy merger.

To identify a runaway SMBH, astronomers can use various methods, such as observing the luminosity of an active galactic nucleus or detecting the star mass that the rogue hole pulls behind it. Another technique is to examine the impact of a suspected rogue SMBH on the diffuse gas in the CGM as it passes through it.

When an SMBH moves through ionized hydrogen in the CGM, it creates a shock front and a substantial wake. Clouds of shocked gas can cool and form stars that resemble knots in the trail in the aftermath. By examining three of the knots, the scientists determined their ages and metallicities, which fell within the suggested age range and attributes.

If the host galaxy ejected an SMBH, it should show signs of disruption. The team examined the galaxy that produced the rogue SMBH and found its morphology disrupted. The researchers settled on the runaway SMBH as the best explanation for the data and observations.

While the black hole jet explanation is possible, it has too many issues, such as the lack of visible emission lines and no evidence of nuclear activity. The morphology of the feature also does not match simulations or observations of jet-induced star formation.

However, researchers noted that locating the black holes would provide incontrovertible evidence for their conclusion, as the “smoking gun” evidence for this scenario would be the unambiguous identification of the black holes themselves. These candidates are for “hyper-compact stellar systems,” which are SMBHs enveloped in stars and gas that escaped with them.

Looking ahead, future data from the Nancy Grace Roman telescope can be searched with automated algorithms, and deeper data from the JWST NIRSPEC IFU could provide evidence of ionized gas bound to the black holes. Additionally, as the morphology of the feature is striking, it should not be too difficult to find more examples if they exist.

Related Posts

The Impact of Ozone Layer Depletion on Our Environment

What If We Lose Our Ozone Layer? Here’s Why We Need to Protect It The ozone layer, a vital shield that protects us from the sun’s harmful…

This Explosive Volcanic Eruption in Tonga was Visible Even From Space!

  Tonga’s Underwater Volcano Erupts and Shocks the World – A Must-Watch Video! Mother Nature can be both beautiful and terrifying at the same time, and this…

The Amazing Story of a Mother’s Courage: Giving Birth on the Side of a Queensland Road

  While traveling 80 kilometers to the һoѕріtаɩ in labor, a pregnant woman in Queensland gave birth by the side of the road. When Saalia Maestrom, a…

Powerful Photographs of Women in Labor That Show the True Experience of Giving Birth

We kпow that giviпg birth is dіffісᴜɩt aпd that we shoυld prepare for this. The first thiпg that υsυally comes to miпd is how to deal with…

Empowering Birth Photography: 10 Captivating Images that Showcase the Power of Humanity

Α lovely, traпsitory momeпt iп time is birth. Each oпe has beeп ᴜпіqᴜe; пot oпe has beeп the same. Each is distiпct, mυch like a fiпgerpriпt; every…

The Unbelievable Story of a Mother Who Beat the Odds and Gave Birth to Four Miracle Babies

Α mυm who ѕtгᴜɡɡɩed with fertility іѕѕᴜeѕ for years has shared the gobsmackiпg momeпt a doctor told her she was pregпaпt with qυadrυplets. Α womaп from Αυstralia…

Leave a Reply

Your email address will not be published. Required fields are marked *